Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10522, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719898

RESUMO

The development of biotechnological lactic acid production has attracted attention to the potential production of an optically pure isomer of lactic acid, although the relationship between fermentation and the biosynthesis of highly optically pure D-lactic acid remains poorly understood. Sporolactobacillus terrae SBT-1 is an excellent D-lactic acid producer that depends on cultivation conditions. Herein, three enzymes responsible for synthesizing optically pure D-lactic acid, including D-lactate dehydrogenase (D-LDH; encoded by ldhDs), L-lactate dehydrogenase (L-LDH; encoded by ldhLs), and lactate racemase (Lar; encoded by larA), were quantified under different organic nitrogen sources and concentration to study the relationship between fermentation conditions and synthesis pathway of optically pure lactic acid. Different organic nitrogen sources and concentrations significantly affected the quantity and quality of D-lactic acid produced by strain SBT-1 as well as the synthetic optically pure lactic acid pathway. Yeast extract is a preferred organic nitrogen source for achieving high catalytic efficiency of D-lactate dehydrogenase and increasing the transcription level of ldhA2, indicating that this enzyme plays a major role in D-lactic acid formation in S. terrae SBT-1. Furthermore, lactate racemization activity could be regulated by the presence of D-lactic acid. The results of this study suggest that specific nutrient requirements are necessary to achieve a stable and highly productive fermentation process for the D-lactic acid of an individual strain.


Assuntos
Fermentação , L-Lactato Desidrogenase , Ácido Láctico , Nitrogênio , Ácido Láctico/metabolismo , Ácido Láctico/biossíntese , Nitrogênio/metabolismo , L-Lactato Desidrogenase/metabolismo , Lactato Desidrogenases/metabolismo , Bacillales/metabolismo , Bacillales/genética
2.
Gene ; 916: 148439, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38583819

RESUMO

The scarcity of soil nutrient availability under cold conditions of Himalayan regions needs a sustainable approach for better crop yields. The cold-adapted bacteria, Exiguobacterium sibiricum K1, with the potential to produce several plant growth-promoting (PGP) attributes, nitrogen fixation, indole acetic acid production, phosphate and potassium solubilization at 10 °C can provide an opportunity to promote crop yield improvement in an eco-friendly way under cold conditions. The bacterium also exhibited biocontrol activity against two phytopathogens and produced siderophore (53.0 ± 0.5 % psu). The strain's PGP properties were investigated using a spinach-based bioassay under controlled conditions. The bacterized seeds showed a notable increase in germination rate (23.2 %), shoot length (65.3 %), root length (56.6 %), leaf area (73.7 %), number of leaflets (65.2 %), and dry matter (65.2 %). Additionally, the leaf analysis indicated elevated chlorophyll pigments, i.e., chlorophyll a (55.5 %), chlorophyll b (42.8 %), carotenoids (35.2 %), percentage radical scavenging activity (47.4 %), and leaf nutrient uptake such as nitrogen (23.4 %), calcium (60.8 %), potassium (62.3 %), and magnesium (28.9 %). Moreover, the whole-genome sequencing and genome mining endorsed various biofertilisation-related genes, including genes for potassium and phosphate solubilization, iron and nitrogen acquisition, carbon dioxide fixation, and biocontrol ability of Exiguobacterium sibiricum K1. Overall, this study highlights the role of Exiguobacterium sibiricum K1 as a potential bioinoculant for improving crop yield under cold environments.


Assuntos
Temperatura Baixa , Fixação de Nitrogênio , Spinacia oleracea/microbiologia , Spinacia oleracea/genética , Germinação , Clorofila/metabolismo , Sideróforos/metabolismo , Folhas de Planta/genética , Ácidos Indolacéticos/metabolismo , Genoma Bacteriano , Fosfatos/metabolismo , Desenvolvimento Vegetal/genética , Bacillales/genética , Bacillales/metabolismo , Agentes de Controle Biológico
3.
J Econ Entomol ; 116(1): 223-232, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36421056

RESUMO

Spodoptera litura is one of the most destructive lepidopteran insects of cabbages and cauliflowers in the world. Cry1 and Vip3 toxins from Bacillus thuringiensis have been reported to show toxicity in multiple lepidopteran insects. Binding of toxic molecules to specific receptors on the midgut epithelial cells is known to be a key step in the action mode of Bt toxins. Aminopeptidase N (APN) -like proteins have been reported to be binding sites of multiple Cry toxins in the midgut of Cry susceptible insects. In the present study, we identified six midgut APNs by analysis of the genome and midgut transcriptome of S. litura. CRISPR/Cas9 mediated gene-knockout system was utilized to mutate the GPI-anchor signal peptide at the C terminus of SlAPN1. SlAPN1 was verified to be removed from the midgut brush border membrane vesicles of a homozygous knockout strain of S. litura (SlAPN1-KO). Bioassay results indicated that susceptibility of the SlAPN1-KO strain to Cry1Aa, Cry1Ac, Cry1Ca, and Vip3Aa toxins was close to that of the wild-type strain of S. litura. RT-qPCR results showed that the transcriptional level of SlAPN2-6 was not up-regulated after knockout of the SlAPN1. Results in this study indicated that the SlAPN1 did not play a critical role in the pathway of toxicity of Cry1Aa, Cry1Ac, Cry1Ca, and Vip3Aa toxins in S. litura.


Assuntos
Bacillaceae , Bacillales , Bacillus thuringiensis , Inseticidas , Mariposas , Animais , Spodoptera , Bacillus thuringiensis/genética , Bacillus thuringiensis/química , Larva/genética , Inseticidas/farmacologia , Inseticidas/metabolismo , Antígenos CD13/genética , Antígenos CD13/metabolismo , Bacillaceae/metabolismo , Bacillales/metabolismo , Microvilosidades/metabolismo , Proteínas de Bactérias/farmacologia , Mariposas/genética , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia
4.
Sci Rep ; 12(1): 10301, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35717508

RESUMO

Cellulases are hydrolytic enzymes with wide scientific and industrial applications. We described a novel cellulase, CelC307, from the thermophilic indigenous Cohnella sp. A01. The 3-D structure of the CelC307 was predicted by comparative modeling. Docking of CelC307 with specific inhibitors and molecular dynamic (MD) simulation revealed that these ligands bound in a non-competitive manner. The CelC307 protein was purified and characterized after recombinant expression in Escherichia coli (E. coli) BL21. Using CMC 1% as the substrate, the thermodynamic values were determined as Km 0.46 mM, kcat 104.30 × 10-3 (S-1), and kcat/Km 226.73 (M-1 S-1). The CelC307 was optimally active at 40 °C and pH 7.0. The culture condition was optimized for improved CelC307 expression using Plackett-Burman and Box-Behnken design as follows: temperature 20 °C, pH 7.5, and inoculation concentration with an OD600 = 1. The endoglucanase activity was positively modulated in the presence of Na+, Li+, Ca2+, 2-mercaptoethanol (2-ME), and glycerol. The thermodynamic parameters calculated for CelC307 confirmed its inherent thermostability. The characterized CelC307 may be a suitable candidate for various biotechnological applications.


Assuntos
Bacillales , Celulase , Celulases , Bacillales/metabolismo , Celulase/metabolismo , Celulases/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Íons , Temperatura
5.
FEMS Microbiol Lett ; 369(1)2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35687414

RESUMO

Biogenic coalbed methane is produced by biological processes mediated by synergistic interactions of microbial complexes in coal seams. However, the ecological role of functional bacteria in biogenic coalbed methane remains poorly understood. Here, we studied the metagenome assembled genomes (MAGs) of Bacillales and Clostridiales from coal seams, revealing further expansion of hydrogen and acetogen producers involved in organic matter decomposition. In this study, Bacillales and Clostridiales were dominant orders (91.85 ± 0.94%) in cultured coal seams, and a total of 16 MAGs from six families, including Bacillus, Paenibacillus, Staphylococcus, Anaerosalibacter, Hungatella and Paeniclostridium, were reconstructed. These microbial groups possessed multiple metabolic pathways (glycolysis/gluconeogenesis, pentose phosphate, ß-oxidation, TCA cycle, assimilatory sulfate reduction, nitrogen metabolism and encoding hydrogenase) that provided metabolic substrates (acetate and/or H2) for the methanogenic processes. Therein, the hydrogenase-encoding gene and hydrogenase maturation factors were merely found in all the Clostridiales MAGs. ß-oxidation was the main metabolic pathway involved in short-chain fatty acid degradation and acetate production, and most of these pathways were detected and exhibited different operon structures in Bacillales MAGs. In addition, assimilatory sulfate reduction and nitrogen metabolism processes were also detected in some MAGs, and these processes were also closely related to acetate production and/or organic matter degradation according to their operon structures and metabolic pathways. In summary, this study enabled a better understanding of the ecological roles of Bacillales and Clostridiales in biogenic methane in coal seams based on a combination of bioinformatic techniques.


Assuntos
Bacillales , Hidrogenase , Acetatos , Bacillales/metabolismo , Clostridiales/metabolismo , Carvão Mineral/microbiologia , Humanos , Metano/metabolismo , Nitrogênio , Sulfatos
6.
Microb Cell Fact ; 21(1): 39, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292016

RESUMO

BACKGROUND: The microbial production of hemicellulasic cocktails is still a challenge for the biorefineries sector and agro-waste valorization. In this work, the production of hemicellulolytic enzymes by Thermobacillus xylanilyticus has been considered. This microorganism is of interest since it is able to produce an original set of thermostable hemicellulolytic enzymes, notably a xylanase GH11, Tx-xyn11. However, cell-to-cell heterogeneity impairs the production capability of the whole microbial population. RESULTS: Sequential cultivations of the strain on xylan as a carbon source has been considered in order to highlight and better understand this cell-to-cell heterogeneity. Successive cultivations pointed out a fast decrease of xylanase activity (loss of ~ 75%) and Tx-xyn11 gene expression after 23.5 generations. During serial cultivations on xylan, flow cytometry analyses pointed out that two subpopulations, differing at their light-scattering properties, were present. An increase of the recurrence of the subpopulation exhibiting low forward scatter (FSC) signal was correlated with a progressive loss of xylanase activity over several generations. Cell sorting and direct observation of the sorted subpopulations revealed that the low-FSC subpopulation was not sporulating, whereas the high-FSC subpopulation contained cells at the onset of the sporulation stage. The subpopulation differences (growth and xylanase activity) were assessed during independent growth. The low-FSC subpopulation exhibited a lag phase of 10 h of cultivation (and xylanase activities from 0.15 ± 0.21 to 3.89 ± 0.14 IU/mL along the cultivation) and the high-FSC subpopulation exhibited a lag phase of 5 h (and xylanase activities from 0.52 ± 0.00 to 4.43 ± 0.61 over subcultivations). Serial cultivations on glucose, followed by a switch to xylan led to a ~ 1.5-fold to ~ 15-fold improvement of xylanase activity, suggesting that alternating cultivation conditions could lead to an efficient population management strategy for the production of xylanase. CONCLUSIONS: Taken altogether, the data from this study point out that a cheating behavior is responsible for the progressive reduction in xylanase activity during serial cultivations of T. xylanilyticus. Alternating cultivation conditions between glucose and xylan could be used as an efficient strategy for promoting population stability and higher enzymatic productivity from this bacterium.


Assuntos
Bacillales , Endo-1,4-beta-Xilanases , Bacillales/metabolismo , Carbono/metabolismo , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Xilanos/metabolismo
7.
World J Microbiol Biotechnol ; 37(10): 178, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34549358

RESUMO

Paludifilum halophilum DSM 102817T is the first member of the genus Paludifilum in the Thermoactinomycetaceae family. The thermohalophilic bacterium was isolated from the solar saltern of Sfax, Tunisia and was shown to be able to produce ectoines with a relatively high-yield and to cope with salt stress conditions. In this study, the whole genome of P. halophilum was sequenced and analysed. Analysis revealed 3,789,765 base pairs with an average GC% content of 51.5%. A total of 3775 genes were predicted of which 3616 were protein-coding genes and 73 were RNA genes. The genes encoding key enzymes for ectoines (ectoine and hydroxyectoine) synthesis (ectABCD) were identified from the bacterial genome next to a gene cluster (ehuABCD) encoding a binding-protein-dependent ABC transport system responsible for ectoines mobility through the cell membrane. With the aid of KEGG analysis, we found that the central catabolic network of P. halophilum comprises the pathways of glycolysis, tricarboxylic acid cycle, and pentose phosphate. In addition, anaplerotic pathways replenishing oxaloacetate and glutamate synthesis from central metabolism needed for high ectoines biosynthetic fluxes were identified through several key enzymes. Furthermore, a total of 18 antiSMASH-predicted putative biosynthetic gene clusters for secondary metabolites with high novelty and diversity were identified in P. halophilum genome, including biosynthesis of colabomycine-A, fusaricidin-E, zwittermycin A, streptomycin, mycosubtilin and meilingmycin. Based on these data, P. halophilum emerged as a promising source for ectoines and antimicrobials with the potential to be scaled up for industrial production, which could benefit the pharmaceutical and cosmetic industries.


Assuntos
Diamino Aminoácidos/metabolismo , Bacillales , Metabolismo Secundário/genética , Bacillales/genética , Bacillales/metabolismo , Biologia Computacional , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Salinidade , Estresse Salino
8.
J Am Chem Soc ; 143(30): 11690-11702, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34283601

RESUMO

Lasso peptides are a family of ribosomally synthesized and post-translationally modified peptides (RiPPs) defined by their threaded structure. Besides the class-defining isopeptide bond, other post-translational modifications (PTMs) that further tailor lasso peptides have been previously reported. Using genome mining tools, we identified a subset of lasso peptide biosynthetic gene clusters (BGCs) that are colocalized with genes encoding protein l-isoaspartyl methyltransferase (PIMT) homologues. PIMTs have an important role in protein repair, restoring isoaspartate residues formed from asparagine deamidation to aspartate. Here we report a new function for PIMT enzymes in the post-translational modification of lasso peptides. The PIMTs associated with lasso peptide BGCs first methylate an l-aspartate side chain found within the ring of the lasso peptide. The methyl ester is then converted into a stable aspartimide moiety, endowing the lasso peptide ring with rigidity relative to its unmodified counterpart. We describe the heterologous expression and structural characterization of two examples of aspartimide-modified lasso peptides from thermophilic Gram-positive bacteria. The lasso peptide cellulonodin-2 is encoded in the genome of actinobacterium Thermobifida cellulosilytica, while lihuanodin is encoded in the genome of firmicute Lihuaxuella thermophila. Additional genome mining revealed PIMT-containing lasso peptide BGCs in 48 organisms. In addition to heterologous expression, we have reconstituted PIMT-mediated aspartimide formation in vitro, showing that lasso peptide-associated PIMTs transfer methyl groups very rapidly as compared to canonical PIMTs. Furthermore, in stark contrast to other characterized lasso peptide PTMs, the methyltransferase functions only on lassoed substrates.


Assuntos
Ácido Aspártico/análogos & derivados , Bacillales/genética , Peptídeos/metabolismo , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Bacillales/metabolismo , Peptídeos/química , Peptídeos/genética , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/metabolismo , Processamento de Proteína Pós-Traducional , Thermobifida/genética , Thermobifida/metabolismo
9.
Microbiol Res ; 242: 126614, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33045681

RESUMO

The presence of biosurfactants produced by a Bacillus strain in corn steep liquor (CSL), a wastewater stream of the corn milling process, has been recently discovered. However, the species responsible for their production has not been identified at the moment. Therefore, in this work, the Bacillus strain isolated from CSL, with capacity to produce biosurfactants, was subjected to amplification and sequence analysis of the 16S rRNA, being identified as Aneurinibacillus aneurinilyticus. This strain has been proved to be endospore forming and thermophile, what would explain its presence in the commercial CSL. It was observed that the strain under evaluation has the ability to produce both cell-bound and extracellular biosurfactant extracts, which were characterized in this work. The electrospray ionization mass spectrometry (ESI) analysis of the biosurfactant extracts revealed that the extracellular biosurfactant produced by Aneurinibacillus aneurinilyticus is composed by a mixture of lipopeptides, containing C16 and C18 fatty acids and amino acids, including valine, phenylalanine, proline, cysteine, histidine, aspartic acid/asparagine, alanine, glycine, leucine/isoleucine, with biomarkers between 1025-458 m/z. Conversely, the cell-bound biosurfactant extract produced by Aneurinibacillus aneurinilyticus was composed by the cyclic decapeptide gramicidin S, with a characteristic peak at 571 m/z, and lipopeptides with characteristic peaks between 1034-705 m/z, containing alanine, glycine, cysteine, serine, proline, aspartic acid/asparagine, similarly to the amino acid sequence of the extracellular biosurfactant extract.


Assuntos
Bacillales/isolamento & purificação , Bacillales/metabolismo , Tensoativos/química , Tensoativos/metabolismo , Zea mays/microbiologia , Aminoácidos/análise , Bacillales/genética , Bacillus/classificação , Bacillus/genética , Bacillus/isolamento & purificação , Ácidos Graxos/análise , Gramicidina/metabolismo , Lipopeptídeos/análise , RNA Ribossômico 16S/genética , Espectrometria de Massas por Ionização por Electrospray
10.
Ecotoxicol Environ Saf ; 201: 110860, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32563162

RESUMO

The biodegradation of naphthalene using low-density polyethylene (LDPE) immobilized Exiguobacterium sp. RKS3 (MG696729) in a packed bed bioreactor (PBBR) was studied. The performance of a continuous PBBR was evaluated at different inlet flow rates (IFRs) (20-100 mL/h) under 64 days of operation. The maximum naphthalene removal efficiency (RE) was found at low IFR, and it further decreased with increasing IFRs. In a continuous PBBR, the external mass transfer (EMT) aspect was analysed at various IFRs, and experimental data were interrelated between Colburn factor (JD) and Reynolds number (NRe) as [Formula: see text] . A new correlation [Formula: see text] was obtained to predict the EMT aspect of naphthalene biodegradation. Andrew-Haldane model was used to evaluate the bio-kinetic parameters of naphthalene degradation, and kinetic constant νmax, Js, and Ji were found as 0.386 per day, 13.6 mg/L, and 20.54 mg/L, respectively.


Assuntos
Reatores Biológicos/microbiologia , Naftalenos/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Bacillales/crescimento & desenvolvimento , Bacillales/metabolismo , Biodegradação Ambiental , Células Imobilizadas/microbiologia , Cinética , Polietileno/química
11.
J Biotechnol ; 317: 34-38, 2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32360575

RESUMO

Fermentation of carbohydrates present in lignocellulosic (LC) biomass is facilitated by lignin removal, which is usually achieved by adopting various pretreatment methods to provide the enzymes proper access to their respective substrates. Pretreatment using ionic liquid (IL) is relatively recent advancement and considered as mild and green process. ILs can dissolve extensive quantities of biomass and depolymerize the cellulose. In this context, an abundantly available LC biomass, sugarcane bagasse (SB), was pretreated using alkali or with an IL, methyltrioctylammonium chloride, and was used for cellulase production from thermophilic bacteria. In all, 26 indigenously isolated thermophilic bacterial strains were quantitatively screened for cellulase production. 16S rDNA sequences of the promising isolates UE10 and UE27 revealed relatedness with Brevibacillus borstelensis, while the strain UE1 belonged to Aneurinibacillus thermoaerophilus. Cellulase production was compared by utilizing alkali pretreated and IL pretreated SB and the later was found more appropriate. UE1, UE10 and UE27 yielded 22.2, 22.18 and 33.3 IU mL-1 of endoglucanase, respectively, by fermenting IL pretreated SB. The changes in SB structure after pretreatment were evaluated by scanning electron microscopy. This study demonstrated the potential of novel thermophilic bacterial strains to utilize IL pretreated SB for production of industrially important enzyme, cellulase.


Assuntos
Brevibacillus , Celulase/metabolismo , Celulose/química , Líquidos Iônicos/química , Compostos de Amônio Quaternário/química , Bacillales/enzimologia , Bacillales/genética , Bacillales/metabolismo , Brevibacillus/enzimologia , Brevibacillus/genética , Brevibacillus/metabolismo , Celulose/metabolismo , Fermentação , Saccharum/química , Saccharum/metabolismo
12.
Sci Rep ; 10(1): 5563, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32221330

RESUMO

The world is in the midst of an antimicrobial resistance crisis, driving a need to discover novel antibiotic substances. Using chemical cues as inducers to unveil a microorganism's full metabolic potential is considered a successful strategy. To this end, we investigated an inducible antagonistic behavior in multiple isolates of the order Bacillales, where large inhibition zones were produced against Ralstonia solanacearum only when grown in the presence of the indicator triphenyl tetrazolium chloride (TTC). This bioactivity was produced in a TTC-dose dependent manner. Escherichia coli and Staphylococcus sp. isolates were also inhibited by Bacillus sp. strains in TTC presence, to a lesser extent. Knockout mutants and transcriptomic analysis of B. subtilis NCIB 3610 cells revealed that genes from the L-histidine biosynthetic pathway, the purine, pyrimidine de novo synthesis and salvage and interconversion routes, were significantly upregulated. Chemical space studied through metabolomic analysis, showed increased presence of nitrogenous compounds in extracts from induced bacteria. The metabolites orotic acid and L-phenylalaninamide were tested against R. solanacearum, E. coli, Staphylococcus sp. and B. subtilis, and exhibited activity against pathogens only in the presence of TTC, suggesting a biotransformation of nitrogenous compounds in Bacillus sp. cells as the plausible cause of the inducible antagonistic behavior.


Assuntos
Antibacterianos/farmacologia , Bacillales/metabolismo , Bactérias/efeitos dos fármacos , Sais de Tetrazólio/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Testes de Sensibilidade Microbiana
13.
Biomed Res Int ; 2020: 4805706, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32104693

RESUMO

The aim of this study was to determine the combined effect of fermentation parameters and enhance the production of cellular biomass and antibacterial compounds from Paludifilum halophilum SMBg3 using the response surface methodology (RSM). Eight variables were screened to assess the effects of fermentation parameters on growth and metabolite production by Taguchi experimental design. Among these, the initial pH, temperature, and the percentage of MgSO4·7H2O in the medium were found to be most influential. The Box-Behnken design was applied to derive a statistical model for the optimization of these three fermentation parameters. The optimal parameters were initial pH: 8.3, temperature growth: 44°C, and MgSO4·7H2O: 1.6%, respectively. The maximum yield of biomass and metabolite production were, respectively, 11 mg/mL dry weight and 15.5 mm inhibition zone diameter against Salmonella enterica, which were in agreement with predicted values. The bioactive compounds were separated by the thick-layer chromatography technique and analyzed by GC/MS, NMR (1D and 2D), and Fourier-transform infrared spectroscopy (FT-IR). In addition to several fatty acids, N-(1-carboxy-ethyl)-phthalamic acid was identified as the main antibacterial compound. This element exhibited a potent activity against the ciprofloxacin-resistant Salmonella enterica CIP 8039 and Pseudomonas aeruginosa ATCC 9027 with a minimum inhibitory concentration (MIC) value range of 12.5-25 µg/mL. Results demonstrated that P. halophilum strain SMBg3 is a promising resource for novel antibacterial production due to its high-level yield potential and the capacity for large-scale fermentation.


Assuntos
Antibacterianos , Bacillales/metabolismo , Pseudomonas aeruginosa/crescimento & desenvolvimento , Salmonella enterica/crescimento & desenvolvimento , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia
14.
J Hazard Mater ; 381: 120975, 2020 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-31445471

RESUMO

Organic matter (OM) was proved to have a high affinity for arsenic (As) in the presence of ferric iron (Fe(III)), the formed ternary complex OM-Fe(III)-As(V) were frequently studied before; however, the mobilization and transformation of As from OM-Fe(III)-As(V) in the presence of As(V)-reducing bacteria remains unclear. Two different strains (Desulfitobacterium sp. DJ-3, Exiguobacterium sp. DJ-4) were incubated with OM-Fe(III)-As(V) to assess the biotransformation of As and Fe. Results showed that Desulfitobacterium sp. DJ-3 could substantially stimulate the reduction and release of OM-Fe complexed As(V) and resulted in notable As(III) release (30 mg/L). The linear combination fitting result of k3-weighted As K-edge EXAFS spectra showed that 56% of OM-Fe-As(V) was transformed to OM-Fe-As(III) after 144 h. Besides, strain DJ-3 could also reduce OM complexed Fe(III), which lead to the decomposition of ternary complex and the release of 11.8 mg/g Fe(II), this microbial Fe(III) reduction process has resulted in 11% more As liberation from OM-Fe(III)-As(V) than without bacteria. In contrast, Exiguobacterium sp. DJ-4 could only reduce free As(V) but cannot stimulate As release from the complex. Our study provides the first evidence for microbial As reduction and release from ternary complex OM-Fe(III)-As(V), which could be of great importance in As geochemical circulation.


Assuntos
Arsênio/metabolismo , Bacillales/metabolismo , Desulfitobacterium/metabolismo , Ferro/metabolismo , Biotransformação , Oxirredução
15.
Protein Expr Purif ; 159: 42-48, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30894325

RESUMO

Pullulanase is widely used in the starch processing industry as a debranching enzyme. However, extracellular production of pullulanase from recombinant Bacillus subtilis is limited and the loss of plasmids during fermentation of B. subtilis recombinants seriously affects the expression of the foreign protein, especially in large-scale production. In this study, a universal integrated plasmid was conducted harboring the pul cassette that included the pul gene encoding Bacillus naganoensis pullulanase (PUL), a constitutive promoter, PHpaII, and an extracellular signaling peptide, LipA. This cassette was inserted into the genomes of B. subtilis WB800 and B. subtilis WB600 by double homologous recombination. The pullulanase activity of up to 30.32 U/ml and 18.83 U/ml was achieved for B. subtilis WB800-PHpaII-pul and B. subtilis WB600-PHpaII-pul, respectively, under primary conditions. To further enhance the yield of PUL, the effects of four important factors (inoculum size, incubation temperature, shaking speed, and initial pH) on the expression of PUL in shake flask fermentation were evaluated by "one-factor-at-a-time" technique for B. subtilis WB800-PHpaII-pul. Consequently, the extracellular production of PUL was significantly enhanced, resulting in an activity of 60.85 U/ml.


Assuntos
Bacillales/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Glicosídeo Hidrolases/genética , Proteínas Recombinantes/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Escherichia coli/genética , Fermentação , Expressão Gênica , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Concentração de Íons de Hidrogênio , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Temperatura
16.
Antonie Van Leeuwenhoek ; 112(7): 1029-1037, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30759292

RESUMO

A Gram-stain positive, endospore-forming, circular, convex, cream colored, designated strain 18JY8-7T, was isolated from soil collected in Jeju Island, South Korea. Phylogenetic analysis using 16S rRNA gene sequences showed that strain 18JY8-7T formed a distinct lineage within the family Paenibacillaceae (order Bacillales, class Bacilli), and is closely related to Cohnella rhizosphaerae (96.1%, sequence similarity) and Cohnella xylanilytica (96.0%). Optimal growth occurred at 30 °C, pH 6.5 and in the absence of NaCl. The predominant cellular fatty acids were anteiso-C15:0 and iso-C16:0. The major respiratory quinone was MK-7. The polar lipids profile comprised of diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. The DNA G + C content was 57.0 mol %. The genotypic and phenotypic analyses revealed the differentiation of strain 18JY8-7T from all recognized Cohenella species. The strain 18JY8-7T, therefore represents a novel bacterial species within the family Paenibacillaceae, for which the name Cohnella candidum sp. nov. is proposed. The type strain is 18JY8-7T (= KCTC 33969T = JCM 33199T).


Assuntos
Bacillales/isolamento & purificação , Microbiologia do Solo , Bacillales/classificação , Bacillales/genética , Bacillales/metabolismo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Filogenia , RNA Ribossômico 16S/genética , República da Coreia
17.
Biotechnol J ; 14(5): e1800656, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30810274

RESUMO

Optically pure d-lactate production has received much attention for its critical role in high-performance polylactic acid production. However, the current technology can hardly meet the comprehensive demand of industrialization on final titer, productivity, optical purity, and raw material costs. Here, an efficient d-lactate producer strain, Sporolactobacillus terrae (S. terrae) HKM-1, is isolated for d-lactate production. The strain HKM-1 shows extremely high d-lactate fermentative capability by using peanut meal, soybean meal, or corn steep liquor powder as a sole nitrogen source; the final titers (205.7 g L-1 , 218.9 g L-1 , and 193.9 g L-1 , respectively) and productivities (5.56 g L-1 h-1 , 5.34 g L-1 h-1 , and 3.73 g L-1 h-1 , respectively) of d-lactate reached the highest level ever reported. A comparative genomic analysis between S. terrae HKM-1 and previously reported d-lactate high-producing Sporolactobacillus inulinus (S. inulinus) CASD is conducted. The results show that many unrelated genetic features may contribute to the superior performance in d-lactate production of S. terrae HKM-1. This d-lactate producer HKM-1, along with its fermentation process, is promising for sustainable d-lactate production by using agro-industrial wastes.


Assuntos
Bacillales/classificação , Bacillales/isolamento & purificação , Bacillales/metabolismo , Ácido Láctico/biossíntese , Poliésteres/metabolismo , Arachis , Bacillales/genética , Técnicas de Cultura Celular por Lotes/economia , Técnicas de Cultura Celular por Lotes/métodos , Carbono/metabolismo , Meios de Cultura/química , Fermentação , Genoma Bacteriano , Resíduos Industriais , Nitrogênio/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Microbiologia do Solo , Glycine max , Zea mays
18.
Int Microbiol ; 22(1): 41-48, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30810930

RESUMO

Microalgal-bacterial co-cultures were employed for the treatment of artificially prepared metal-rich wastewaters in this study. For the purpose, highly metal-resistant microalgal and bacterial species were isolated from a leading wastewater channel flowing through Lahore, Pakistan, and characterized at the molecular level. The microbial identities were proved after BLAST analysis. The microalgal (Chlorella vulgaris-BH1) and bacterial (Exiguobacterium profundum-BH2) species were then co-cultured in five different proportions. Five different proportions of potentially mutualistic microbial co-cultures (comprising of microalgal to bacterial cells in ratios of 1:3, 2:3, 3:3, 3:1, and 3:2) prepared thus were employed to remediate artificially prepared metal-loaded wastewaters. Three randomly selected toxic metals (Cu, Cr, and Ni) were used in this study to prepare metal-rich wastewaters. The microalgal-bacterial co-cultures were then exposed independently to the wastewaters containing 100 ppm of each of the above mentioned metals. The inoculated wastewaters were incubated maximally for a period of 15 days. The metal uptake was noted periodically after every 5 days. The results of the present study depicted that maximally about 78.7, 56.4, and 80% of Cu, Cr, and Ni were removed, respectively after an incubation period of 15 days. The microbial co-culture consisting of microalgal to bacterial cells in a ratio of 3:1 showed the highest remedial potential. The findings of the present study will be helpful in developing effective microalgal-bacterial consortia for economical, efficient, and environment-friendly rehabilitation of the polluted sites.


Assuntos
Bacillales/metabolismo , Chlorella vulgaris/metabolismo , Técnicas de Cocultura , Metais/metabolismo , Águas Residuárias/microbiologia , Poluentes Químicos da Água/metabolismo , Bacillales/efeitos dos fármacos , Bacillales/crescimento & desenvolvimento , Chlorella vulgaris/efeitos dos fármacos , Chlorella vulgaris/crescimento & desenvolvimento , Resistência a Medicamentos , Metais/toxicidade , Paquistão , Poluentes Químicos da Água/toxicidade
19.
Microbiologyopen ; 8(5): e00704, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30066438

RESUMO

As the optical purity of the lactate monomer is pivotal for polymerization, the production of optically pure d-lactate is of significant importance. Sporolactobacillus inulinus YBS1-5 is a superior optically pure d-lactate-producing bacterium. However, little is known about the relationship between lactate dehydrogenases in S. inulinus YBS1-5 and the optical purity of d-lactate. Three potential d-lactate dehydrogenase (D-LDH1-3)- and two putative l-lactate dehydrogenase (L-LDH1-2)-encoding genes were cloned from the YBS1-5 strain and expressed in Escherichia coli D-LDH1 exhibited the highest catalytic efficiency toward pyruvate, whereas two L-LDHs showed low catalytic efficiency. Different neutralizers significantly affected the optical purity of d-lactate produced by strain YBS1-5 as well as the transcription levels of ldhDs and ldhLs. The high catalytic efficiency of D-LDH1 and elevated ldhD1 mRNA levels suggest that this enzyme is essential for d-lactate synthesis in S. inulinus YBS1-5. The correlation between the optical purity of d-lactate and transcription levels of ldhL1 in the case of different neutralizers indicate that ldhL1 is a key factor affecting the optical purity of d-lactate in S. inulinus YBS1-5.


Assuntos
Bacillales/enzimologia , Bacillales/metabolismo , Perfilação da Expressão Gênica , Lactato Desidrogenases/metabolismo , Ácido Láctico/metabolismo , Bacillales/genética , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Lactato Desidrogenases/genética
20.
Photochem Photobiol ; 95(1): 315-330, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30485446

RESUMO

"High-altitude Andean Lakes" (HAAL) are pristine environments harboring poly-extremophilic microbes that show combined adaptations to physical and chemical stress such as large daily ambient thermal amplitude, extreme solar radiation levels, intense dryness, alkalinity, high concentrations of arsenic (up to 200 ppm) and dissolved salts. In this work, we compared the UV resistance profiles, pigment content and photoreactivation abilities of three UV-resistant bacteria isolated from distinct niches from HAALs, that is Acinetobacter sp. Ver3 (water, Lake Verde; 4400 m), Exiguobacterium sp. S17 (stromatolite, Lake Socompa, 3570 m) and Nesterenkonia sp. Act20 (soil, Lake Socompa, 3570 m). UV resistance ability of HAAL's strains indicate a clear adaptation to high radiation exposure encountered in their original habitat, which can be explained by genetic and physiological mechanisms named as the UV-resistome. Thus, the UV-resistome depends on the expression of a diverse set of genes devoted to evading or repairing the damage it provoked direct or indirectly. As pigment extraction and photoreactive assays indicate the presence of photoactive molecules, we characterized more in detail proteins with homology to photolyases/cryptochromes members (CPF). Phylogenetic analyses, sequence comparison and 3D modeling with bona fide CPF members were used to prove the presence of functional domains and key residues in the novel proteins.


Assuntos
Acinetobacter/efeitos da radiação , Bacillales/efeitos da radiação , Criptocromos/metabolismo , Desoxirribodipirimidina Fotoliase/metabolismo , Lagos/microbiologia , Micrococcaceae/efeitos da radiação , Tolerância a Radiação , Raios Ultravioleta , Acinetobacter/metabolismo , Altitude , Bacillales/metabolismo , Micrococcaceae/metabolismo , América do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA